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ABSTRACT 

The diagram technique recently developed by the  
author (Ref. 1) for the solution of Liouville’s equation i s  
extended and suitably modified to cover the case of the 
collisionless Boltzmann equation for a plasma. The use- 
f u l n e s s  of the method is demonstrated by two problems: 
First the influence of a plane-polarized electric wave on 
the electron distribution function of a low temperature 
plasma, and secondly the propagation of a small initial 
disturbance for the case of a plasma which i s  governed 
by the Vlasov equation (Ref. 2). 

I. INTRODUCTION 

In Ref. 1 a solution of the Liouville equation for an N particle system w a s  found, 

essentially by expanding the assoc ia ted  Green’s function into a Sturm-Liouville se r ies .  T h e  

resu l t  obtained may be s t a t ed  as follows: the distribution function f at time t i s  uniquely con- 

nec ted  with an arbitrarily prescribed initial distribution function fo a t  time t ’ through a scattering 

operator, thus 

T h e  scattering operator in turn i s  given by the se r i e s  

s =  1 s, 
n = O  

with S 

products of forces  and gradients. The structure of these  t e r n s  can be expressed by diagrams and 

each contribution may be written down easily according to the rules given in  Ref. 1. 

- 1 and each S for n 2 1 turned out to be a sum of contributions consisting of various 
0 -  
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I t  i s  to be remarked, however, that a complete solution according to th i s  scheme i s  more 

or less u s e l e s s  i f  i t  i s  not supplemented by s ta t i s t ica l  considerations. Of course an exac t  

solution of Liouville's equation i s  equivalent to an exac t  solution of the equations of motion of 

the N particle system, which i s ,  a s  i s  well known, a prohibitive venture. 

The  case to be considered here i s  the c a s e  of t he  so-called coll isionless Boltzmann 

equation for a plasma. T h i s  equation descr ibes  a system of charged particles in which only the 

influence of the long range forces i s  taken into account. It can be shown that the co l l i s ion less  

Boltzmann equation is obtained from Liouville's equation with only one s ta t i s t ica l  assumption 

(Ref. 3). T h i s  assumption i s  that the distribution function for the N particles factorizes into a 

product of distribution functions for each individual particle'. 

f (R ,  V ,  t )  = f ( r l  r 2  ..- r N ,  v1 v 2  ..- vN t )  

Considering f as the probability density for finding particle 1 a t  r 1  vl, a particle 2 a t  

r 2 v 2 ,  and so on, Eq. (3) i s  an expression for the assumption that the  particles are uncorrelated 

(the joint  probability i s  equal to the product of the individual probabilities). T h i s  assumption 

introduces errors, of course. I t  i s  intuitively c lear  that the assumption of Eq. (3) should break 

down under any circumstances if two or more particles come c lose  to each other. At low enough 

dens i t ies  the  encounter of more than two particles i s  a rare event and the c lose  encounter of two 

particles finds i ts  expression in the collision integral (Ref. 4). T o  maintain the assumption of 

Eq. (3) for all values of r .  and v .  therefore simply means to neglect the collision integral 

altogether. This  would be  a bad approximation if any appreciable forces would be exerted only 

during c lose  encounters, as i s  the case  in a neutral gas ,  for instance.  But a different situation 

ex i s t s  in the case of a plasma. Here there are predominantly the long-range Coulomb forces 

between the particles s o  that the  error made by neglecting coll isions may presumably be within 

tolerable limits. 

I I 

In Section I1 the solution of the initial-value problem for the co l l i s ion less  Boltzmann 

equation will be derived. The  method of solution will be patterned after the .approach given 
in Ref. 1. However, owing to the non-linear character of the bas ic  equation, the scheme to  

be developed will b e  more complex than tha t  given in Ref. 1, but the  diagram representation 

found there can be extended naturally to cover th i s  case. T h e  advantage of the diagram method 

will be demonstrated in Section 111. Once the rules of the game, that i s ,  the connection between 

the topological structure of a diagram and the mathematical structure of its algebraic counterpart, 

' The presence of transverse photons does not change th is  statement. Only the distribution 

function has to be suitably modified to include the additional degrees  o f  freedom. 
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are known, i t  is only a matter of comparatively simple algebra to obtain explicit expressions for 

the solution of the col l is ionless  Boltzmann equation i n  many c a s e s -  that i s ,  in c a s e s  where the 

number of possible diagrams representing non-vanishing contributions i s  not forbiddingly high. 

The real  advantage of a diagram expansion i s  here, a s  elsewhere (for instance,  the Feynman 

diagrams), to keep track of a large number of possible contributions so that nothing i s  forgotten 

and to s e e  immediately whether a certain contribution actually vanishes  a s  the case  may be. 

Here, as elsewhere, a diagram by i tself  does not have any physical significance other than that 

of the algebraic expression for which i t  stands. 
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II. DERIVATION 

T h e  collisionless Boltzmann equation in  i t s  most general form may be written as follows 

(Ref. 3, 5): 

(4) 

+ ( dt f d3r ‘d3 v ’ 1 Bii ( r ,  v ,  t; r,’v,’t) f i  (r,’v,’ t ’ )  - 0, fi ( r ,  v, t )  

-m i 

In th i s  equation the meaning of the various terms i s  as follows: f .  ( r ,  v ,  t) i s  the distri- 
I 

bution function for particles of kind j (electrons, ions, etc.). The vector A .  represents an 

externally applied force acting on the  particles of kind j .  T h e  integral kernel B .. s t ands  for the 

interaction of the particles among each other and i s  essent ia l ly  given by a complete solution of 

Maxwell’s equations (Ref. 5). The  retardation i s  properly accounted for by the integral over all 

t imes t ‘ earlier than t. If retardation i s  neglected 8 . .  contains a factor 6 (t - t ‘). Equation (4) i s  

now solved with the  following “ansatz”, which i s  nothing e l s e  than an ordinary perturbation 

expansion with respect to A and 8 .  

I 

I’ 

I’ 

so that 

(t + v V,) fI1) = A i .  0, fi(O) + ‘ dt  f d3r ‘d3  t, ’ 1 Bii ( r ,  v ,  t ;  r,’v,’ t ’) 

-m i 
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Assume that the distribution functions f .  for some initial time T are known I 

the ini t ia l  electromagnetic fields are also specified 

f o r t  = 7 
E = Eo(', v )  

H = H o ( r ,  v )  

This ,  of course, i s  tantamount to assuming that not only the distribution function at t = 7 i s  

known but that i t  i s  a l so  known for earlier times, s ince  

(9)  

Without retardation E,  and H, are uniquely given by the initial distribution function f*  alone. 

The  solution of Eq. (6) together with Eq. (8) i s  given by 

so tha t  the equation for the first-order contribution f.('), Eq. (6a), reads  I 

+ Jc  dt  ' 1 d3r'd3v ' 1 B j i  ( r ,  v ,  t ;  r , ' v , ' t ' )  

(12) 

T i 
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From now on the second term on the right hand s ide  of Eq. (12) will be incorporated into 

the f i rs t  one without specific change of notation. Eq. (12) is eas i ly  solved with the aid of the 

Green's function introduced in  Ref. 1 ( s e e  Eq. 3 of Ref. 1) and the first-order contribution i s  

t .  

Note that the  term involving the external forces A is exactly equal to the corresponding 

term in the expansion of Liouville's equation given in Ref. 

s ince  Eq. (4) without the non-linear term i s  jus t  the one-particle Liouville equation. Now, 

inserting Eq. (13) back into the equation which expresses  I by f;') and f;'), f ; 2 )  i s  easily 

determined. Continuing along th is  line, expressions may be found for f J 3 ) ,  f;4) and so  on. In 

principle, t he  distribution function i s  therefore known for a l l  t imes t > 7, provided i t  i s  known 

together with the initial f ields for t = T .  I t  must be sa id ,  however, that owing to the non-linear 

character of the basic equation, Eq. (4), the higher order terms become rapidly more and more 

involved so  that in practice a general solution i s  as far away as if Eq. (4) were simply written 

down and le f t  at that. Fortunately the outlook i s  not so dim in many c a s e s  of interest, namely in 

c a s e s  where some kind of approximations are allowed. But in order to s e e  how exactly any given 

approximation influences higher order terms f'") i t  i s  necessary to study the mathematical 

structure of a term of arbitrary order. T h i s  i s  conveniently done by means of a diagram technique 

which allows expression of any contribution to f .  in a concise  way. In Ref. 1 a diagram scheme 
1 

was  developed which i s  applicable to the present problem in i t s  entirety. Provided tha t  the non- 

linear term of Eq. (4) i s  missing, the scheme developed in Ref. 1 i s  completely sufficient and al l  

contributions to any order are given by those diagrams. The  first-order contribution, for instance,  

is given by Eq. (13) if we drop the non-linear (B-containing) term. I t  i s  represented by the 

diagram 

Th i s ,  of course, i s  to be expected 

I 

i 

I 

2The properties of the operator V v - ( t l  are explained in Ref. 1. I t  is noted here that 
only operates on the second argument v in f* [ r - v ( t - ~ ) ,  v ,  71. 
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The reader i s  referred to Ref. 1 for details .  

a =  
2 I 

The second-order contributions 

P =  m 
1 2  

( 14) 

can immediately be written down with the help of the rules given in this  reference and i t  i s  found 

that 

t 
a = s d t ,  dt, A [ r  - v ( t  - t , ) ,  v, t , ]  . P,, A [ r  - v ( t  - t , ) ,  v,  t21 - P, f *  (15) 

r r 

In these  expressions the gradient operations P are defined by 4 

and a c t  on that function of v and r on which their representative l ines  in the corresponding diagram 

end. In Eq. (15) P,, a c t s  on the succeeding A vector, whereas P,, = Vv - ( t l  - T )  0, ac ts  on the 

las t  (external) vertex (that i s ,  on the initial distribution function). From now on a vertex repre- 

senting an A vector (external force vector) will be called an A-vertex. The diagrams shown so 

far contain only A-vertices. A vertex associated with the initial distribution function (the external 

vertex of Ref. 1) will be called an f-vertex. The diagrams shown so far each contain one f-vertex. 

An inspection is now made of the contributions due to  the non-linear integral term of Eq. (4). The  

first-order contribution due to the non-linear integral term i s  shown in Eq. (13). I t  i s  observed 

that it may be generated from the first contribution (the one represented by an A-vertex) by 

replacing A [ r  - v ( t  - t , ) ,  v, c , ]  by t 

t 1 s ' d t ' l d 3 r ' d 3 v ' B j i  [ r  - v ( t  - t l ) , v ,  t , ;  r, 'v, 't ']  fr [ r ' - v ' ( t ' - ~ ) , v , ' ~ ]  
i r  

(18) 

I t  should be noticed, furthermore, that the first s e t  of variables of the integral kernel 

R (r, v ,  t ;  r,'v,'t ') is treated in exactly the  same way a s  the set of variables of the corresponding 

A-vertex. The vector 6 is also multiplied by f* [ r ' -v '  ( t  ' - T) ,  v,' 7 1 .  Obviously the zero-order 

contribution to the distribution function i s  given by Eq. (11). I t  may be represented by a simple 

f vertex 
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( 19) * x f. [ r  - v ( t  - T ) , v ,  73 
I 

An expression which i s  mathematically completely equivalent to A [ r  - v ( t  - t l ) ,  v, t l ]  in a s  far 

a s  the further s teps  of calculation are concerned, i s  obtained by replacing the r v t  variables of 

the zero-order term of Eq. (19) by the second s e t  of variables r ' v ' t  ' of the integral kernel and 

then integrating over all phase space d 3  r 'd3  v ' and over the time t ' from 7 to t l  and finally sum 

over all distribution functions i a s  indicated i n  Eq. (18). A diagram which reproduces these fac ts  

i s  

L I 3  I 

A 'filled dot' i s  called a B-vertex. A B-vertex a t  position u i s  the representative of the 

following operator 

i 

The diagram of Eq. (20) shows a B-vertex a t  position 1. T h i s  B-vertex i s  connected with 

an f-vertex by a dotted line. The meaning of this  i s  now clear. The  single f-vertex which i s  

connected with the B-vertex contains the primed variables r ' v  't ' over which the indicated inte- 

gration of Eq. (21) takes  place. In f i rs t  order, therefore, there are two contributions. The first 

The second one is obtained from the first one by replacing the A-vertex by 

e--- -I( 
I 

which i s  precisely the expression of Eq. (18). I t  therefore is given by 

fL3 
The  second-order contributions may now be investigated. The  corresponding diagrams 

can only contain either two A-vertices, two B-vertices or one A and one B-vertex. The  diagrams 

with two A-vertices are shown in Eq. (14). Their contributions are easily obtained by using the 

rules given in Ref. 1. Replacing either one or both of the A-vertices by a B-vertex with attached 

zero-order diagram yields s ix  new possibil i t ies.  They are  
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I 2 I 2 

A s  an example, write the contribution due to the diagram of Eq. (22d). It i s  

x B . .  [ r - v ( t - t 2 ) , v 7  t 2 ;  r , 'v, ' t ' ]  ff [ r ' - v ' ( t ' - r ) , v , ' ~ ]  (23) 
1' 

i 

The eight contributions so far considered are not all in the second order. Actually there 

are  two more. A B-vertex may have attached to i t  (by a dotted line) a first-order diagram. Since 

the B-vertex counts as f i rs t  order, the B-vertex with an attached first-order diagram is of second 

order. Now, there are two first-order diagrams 

and 

Therefore, 

and 

m I 

m I 2 

m I 2 
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are possible  second-order diagrams. Earlier a prescription was  given for an /-vertex which was  

connected with a B-vertex by a dotted line. I t  said: multiply the kernel represented by the B- 
vertex with the zero-order diagram in which r v  and t are replaced by the integration variables 

r 'v '  and t ' and then integrate a s  indicated. Therefore, i t  is suspected that to obtain the correct 

expression for the diagram of Eq. (24a), for instance,  i t  is merely necessary to multiply the 

integral kernel represented by the B-vertex with the expression corresponding to the first-order 

diagram in which only the variables r v  and t are changed into the integration variables r ' v ' and  

t '. T h i s  i s  in fact true. A diagram which is attached to a B-vertex by a dotted l ine is called an 

internal diagram. I t  is necessarily of lower order than the complete diagram. Equation (24) shows 

the two possible c a s e s  in which a second-order diagram is constructed by means of B-vertices 

and internal diagrams of the first order. The  internal diagram of Eq. (24a) i s  given by (replacing 

r ,  v, t by r,'v,'t ') 

t' * [ r  - v ( t  ' - t,), v,' t,] . P,, fi [ r  ' - v ' ( t  ' - 71, v,' T I  J dt, 
7 

This is, therefore, the expression with which the kernel ( the B-vertex)-has to be multiplied. 

Applying these prescriptions to Eq. (24a) i t  is apparent that  i t  represents 

t' 
x d t ,  Ai [ r  ' - v ' ( t  ' - t J 7  v,' t ,] P,, f: [ r ' - v ' ( t  ' - T) ,  v,' T]  

7 
( 25) 

Note here that the expression 

may be considered as a replacement for an A-vertex so that  the rules  governing the connection 

of A-vertices by solid l ines  a s  outlined in Ref. 1 st i l l  apply in their  entirety if a simple A-vertex 

i s  replaced by a more complicated structure ( a  B-vertex with an attached internal diagram). For 

instance,  from the two possible  second-order diagrams with only A-vertices (Eq. 14) 

I 2 
m I 2 
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by replacing 

I I 2 3 4  
and 

two possible  seventh-order diagrams ate obtained, viz: 

I 2 3 4  5 6 7  

and 

I 2 3 4  5 6 7  

Turning back to the diagram of Eq. (24b),the expression i t  represents i s  obtained by noting that 

the internal diagram it contains is given by Eq. (13) or 

I t  is necessary only to replace r v t  in the above expression by r N  V "  t," the integration variables 

of the f i rs t  B-vertex of the diagram Eq. (24b), multiply and integrate thus 

Page 11 
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I 

to obtain the expression which replaces the simple A-vertex of the diagram 

n I 

thereby converting i t  into the diagram of Eq. (ab). 

For the sake of completeness,the rules for the association of given diagram with i t s  

corresponding contribution to the distribution function may be i l lustrated with the following 

example: 

I 2 3  4 5  6 

T h i s  is a sixth-order diagram which contains two internal diagrams. It is generated from the 

simple second-order diagram 

I 6 
by replacing the f i rs t  A-vertex with a B-vertex with an attached internal diagram of the fourth- 

order, thus 

0 4  0- -- (28) 
I I 2 3 4  5 

The fourth-order diagram in turn is obtained from an third-order diagram by replacing the third 

A-vertex with a B-vertex with attached first-order diagram in the following way: 

+ 
1 2 3  I 2 3  I 2 3  

In order to write down the contribution to the distribution function f represented by the diagram of 

Eq. (26) it i s  f i rs t  necessary to  work out the internal diagram of Eq (28). The diagram 

/FA 2 3  4 

gives (applying the rules of Ref. 1) 

Page 12 
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NOW the A-vertex number 4 must be replaced by a B-vertex with attached first-order diagram 

0- .--- C r - h  
4 4 5  

TO do this the first-order diagram is written 

Therefore 

t-- P3 
4 5  

is given by (according to Eq. 21) 

This,then, is  the expression which replaces  the A-vertex number 4 i n  Eq. (30). In other words, 

the complete internal diagram of Eq. (29) is given by 

* t '  
[ r - v ( t - t 4 ) , v ,  t4; r, 'v, 't ' l  d t 5 A  [ r ' - v ' ( t ' - t 5 ) , v , ' t 5 I  - P i 7 f j  

7 

Again applying the rule of Eq. (21), th i s  time to Eq. (B), yields  the expression 
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which replaces  the first  A-vertex of the diagram of Eq. (27). Since the diagram of Eq. (n) is  

given by 

i t  is found that for the diagram of Eq. (26) 

t t 
the diagram of Eq. (26) = I dt l  d t ,  I 1 d t " I d 3 r " d 3 v r r  1 ai (r,"v,"t") 

7 7 7 

i 

x Bki [ r  - v ( t  - tl) ,  v, t l ;  r,"v,"t"] .. P 16 (31) 

x A [ r  - v ( t  - t6), v, t 6 ]  - P67 fz [ r  - v ( t  - 71, v, 71 

Although now i t  i s  possible  to form a concise idea  as to what contributions to expect  for any 

given order n, a formula will be given here for the number N, of diagrams of order n , 3  L e t  n be 

the order for which i t  is desired to know the number of possible  diagrams N, . Then write 

n = a. + 2 a l  + 3 a 2  + ... an-l (32) 

and determine all possible  ways by which Eq (32) can be sat isf ied with positive integers a l  

a2 an-l. For instance for n = 4 we would have the five possible  solutions 

a0 = 4 a l  = a2 = a3 = 0 

a0 = 2 al = 1 a2 = a3  = 0 

a0 = 1 al = 0 a2 = 1 a3 = O  

a. = 0 al = 2 a2 = a3 = 0 

a. = 0 a l  = a2 = 0 a3  = 1 I 

3The author i s  grateful to H. Wahlquist for the derivation of the formula in Eq. (33). 
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If there are M solutions in the general case. there are M sets  of positive integers aie) 
(induding the zero) 15 E 5 M. The number N, is then given by the expression 

y = o  

The sum goes over all possible solutions of E q  (32). To give an idea of how rapidly N ,  
increases, N ,  i s  listed for the first few orders. For large n, N ,  goes approximately a s  2, n! 

n 

1 

2 

10 

74 

690 

Page 15 
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111. APPLICATIONS 

Although the number of diagrams, and therefore the number of contributions, increases  

tremendously with increasing n, nevertheless  there are many c a s e s  which can be handled 

advantageously by the diagram method. Here are two examples confined to the Vlasov equation 

(Ref. 2). I t s  linearized version has been treated by several authors (Ref. 6, 7, 8). The  Vlasov 

equation is applicable to a moderately low-density, fully ionized, electron-ion plasma in which 

the ions  have negligible velocities (they form an immovable uniform background of posi t ive 

charges). Only the electrons are considered to move at liberty, but again they are slow enough 

so that all effects of retardation for the electromagnetic f ie lds  are negligible ( v / c - +  0). Equation 

(1) of Section I1 becomes Vlasov's equation if the index of the distribution function i s  dropped 

(i t  i s  necessary only to be concerned about the electron distribution) and if 

Here N is the number density of electrons. 

The first problem considered here i s  the following: At t = T = 0 a plane-polarized light 

wave is switched on. Initially the electron distribution function f ( r ,  v ,  t )  w a s  Maxwellian 
* *  f = f  (v) -- e - a v 2 .  

How does the light wave disturb the plasma? The  light wave may be described by 

E = a cos  ( k  - r - ut) (35) 
e x t  

with 

Vlasov's equation reads then (for t > 0) 

Page 16 
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f ( r ,  v, t )  for t > 0 i s  given by the sum of a l l  possible diagrams according to Section 11. It will  

be immediately noticed that a great simplification arises from the fac t  that the initial f i s  solely 

a function of velocity. Because of this,all diagrams containing a zero-order internal diagram 

vanish and 

Without the external force of Eq. (35) the following may be written: 

f ( r ,  v, t )  = x + A +- +...+ + (39) 

and i t  i s  evident tha t  all diagrams vanish and the general  solution i s  

independent of time, provided it was only a function of velocity initially. Now for consideration 

of the effect of the external force switched on at t = 0. If the light wave i s  sufficiently small, all 
higher-order terms but the f i rs t  may be neglected. In  other words, only one A-vertex representing 

the light wave equation of Eq. (35) is allowed in any diagram. T h e  only diagrams which do not 

vanish offhand to th i s  order (because of Eq. (38)) a re  

f ( r ,  v, t )  = x + (41) 

The  actual evaluation i s  easy,  and 

t * 
d t l  c o s  { k  - [ r  - v ( t  - t , ) ]  - u t l }  a - Vvf (v) 

m 

or 

I m 
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sin (k  - r - ut) - s in  k * ( r  - v t )  
F ( k  v ,  r ,  t )  = 

k - v - w  
( 44) 

In order to evaluate the  remaining terms of the series of Eq. (41) the always-occurring 

combination i s  determined: 

0- - - A 
I 2 

According to the rules of Section I1 

where F i s  that part of the expression of Eq. (43) which depends explicitly on the sca la r  product 

k v .  But by partial integration the  integral over v ' can be converted into 

which g ives  zero by virtue of Eq. (36). So i t  i s  apparent that  to the first order only Eq. (42) 
contributes to Eq. (41). In the second order there would be contributions from the following 

series: 

I 2 1 2  

T h e  f i rs t  diagram of Eq. (47) vanishes again because of Eq. (36) and the second yields: 

Considering Eq. (48) as a poss ib le  candidate for an internal diagram it is seen  tha t  by 

the same reasoning as  before, no contribution a r i ses .  T h i s  is eas i ly  extended to a l l  higher 

orders and there appears as solution for f :  

* fb, v, t )  = f (4  + 
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Jet Propulsion Laboratory Technical Report No. 32-19 

al l  other diagrams vanish. I t  i s  not difficult to sum these diagrams up. In fac t  the general nth- 

order term is: 

which i s  simply: 

T h e  s e r i e s  of Eq. (49) therefore y ie lds  

Inserting the expression of Eq. (42) into Eq (50) the desired result  i s  finally obtained: 

e sin ( k  - r -ut )  - s in  k - ( r  - vt) 

k . v - w  

I t  i s  easily verified that Eq. (51) i s ,  in fact, a solution of Eq. (37). 

(51) 

T h e  second c a s e  to be considered here i s  treated several  t imes in the literature (Ref. 6, 

7,'8). I t  cons is t s  of the f o l l o d n g  problem: Suppose that initially the distribution function is 

sp l i t  into two parts: 

where the  space-dependent part, fl, is considered small compared to the  uniform background 

which is assumed to be  Maxwellian, 
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The question is, how does the initial disturbance f l  propagate in time? Since there are no 

external forces, the  solution i s  entirely given by diagrams consisting of B-vertices. I t  i s  assumed, 

furthermore, that all higher order terms of f l  may be neglected. T h i s  i s  equivalent to using the 

linearized version of the  Vlasov equation. Consider now the bas i c  vertex 0---x . From Eq. (38) 

and Eq. (52) i t  i s  seen  that 

f*  f O + f l  f l  

so that only f1 survives as a zero-order internal diagram. A complete description of the time 

development of the distribution function i s  obtained through the  following series:  

f = fo + f l < r  - vt,  v) + a + L a  + 
f l  fo f l  fo fo 

a l l  other diagrams either vanish or give a higher order contribution with respect to fl. For f1 

take 

(54) 

(55) 

E measures the strength of the anisotropy. The  expression of Eq. (56) really i s  only a Fourier 

component of the arbitrary density fluctuation 5 ( r )  = ( ~ T ) - ~ J  5 ( k )  e ik.r d 3  k ,  but s ince  the 

series of Eq. (55) is linear in f l ,  i t  may first be  summed and then integrated over k to obtain the 

result  for an arbitrary 5 (I). The particles represented by f l  are also considered to be a t  r e s t  

initially. After some calculation i t  i s  found that: 

f l  fo do 
1 

k 2  
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and in general 

, 

here g ( k )  i s  defined a s  the Fourier transform of the background distribution function 

from Eq. (53). The  general expression of Eq. (59) can be simplified considerably by noting that 

the time integrals are nothing e l se  than a number of convolution integrals "nested" into each 

other. Defining the Laplace transform of and g ( t k )  by 

we see that the Laplace transform of the general term of Eq. (59) i s  

I t  i s  therefore easy to sum the Laplace transform of the ser ies  of Eq. (55) and the result  is: 
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where the Debye-Huckel length w a s  introduced 

The expression of Eq. (64) can eas i ly  be shown to be identical with the result obtained by 

Landau (Ref.  6) and Berz (Ref.  9). 

(65) 
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